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The motion of a bore over a sloping beach, earlier considered numerically by 
Keller, Levine & Whitham (1960), is studied by an approximate analytic tech- 
nique. This technique is an extension of Whitham’s (1958) approach for the 
propagation of shocks into a non-uniform medium. It gives the entire flow behind 
the bore and is shown to be equivalent to the theory of modulated simple waves 
of Varley, Ventakaraman & Cumberbatch (1971). 

1. Introduction 
Whitham (1958) gave a simple rule governing the propagation of a shock wave 

into a non-uniform medium when the shock has assumed an essentially self- 
propagating character and changes mainly owing to the non-uniformity of the 
ambient medium. According to this rule, the compatibility condition, holding 
strictly along a positive characteristic, for example, is assumed to hold along the 
trajectory of a forward-propagating shock. Several authors (Meyer 1963; Hayes 
1968; Ardavan Rhad 1970; Yousaf 1974) have attempted to explain the pheno- 
menal accuracy of this rule when applied to specific problems. These investiga- 
tions have resulted mainly in a refinement of the coefficients of the differential 
relation giving the shock path. Little progress by way of analytic treatment has 
been made beyond what was given by Whitham himself in his original paper. 

In  the present paper we adopt a somewhat different approach and extend 
Whitham’s technique such that, besides the shock path, the entire details of the 
flow behind the shock may be obtained. We study a specific problem, namely 
the propagation of a bore up a sloping beach. This problem was solved numerically 
by Keller et al. (1960). Our method derives from Whitham’s explanation for his 
rule. If u(x,t) and g-lc2(x, t )  denote the fluid velocity and disturbed depth of 
water respectively, Whitham showed that his rule gave good results because the 
factor (u + 2c),, which appears in the difference between the compatibility con- 
dition along the positive characteristic and the equation along the bore obtained 
by his rule is small all along the bore. We assume that this factor is small every- 
where behind the bore and obtain the interesting result (§ 2) that this approxima- 
tion is precisely that of Varley et al. (1 97 1) and gives their modulated simple wave. 
Varley et al. employed their theory of modulated simple waves to study the propa- 
gation of a large amplitude, high frequency, boreless pulse up a sloping beach. We 
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(ci) 

FIGURE 1. The x, t diagram for (a )  u1 < c1 and ( b )  u1 > cl. 

show that the same approximation gives excellent results for flows headed by a 
bore, is consistent with Whitham’s shock rule and satisfies the boundary condi- 
tions exactly at the interface separating the non-uniform disturbed flow behind 
the bore and the uniform flow left behind by an initially uniform bore. Our 
numerical results, given in $4, show good agreement with the exact numerical 
solution of Keller et al. 

2. Theory 
Consider the propagation of a bore which is uniform until it reaches x = 0, 

after which it encounters a sloping beach with slope hA(z) for 0 < x < xo. If g-b2 
is the disturbed depth of water and u is the fluid velocity, the equations of shallow- 
water theory are 

u,t + (c2 + 3u2) ,z = gh&), (2.1) 

C S  + (uc2) ,z = 0. 
The conditions a t  the bore are 

U C ~  = U ( ~ ~ - g h o ) ,  
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U V +  i C 4 -  *(gh,)2 = U(UC2), (2.4) 

where U is the bore velocity. The propagation problem referred to above may be 
stated mathematically as a boundary-value problem for the system (2 .1 )  and 
(2 .2 ) ,  with boundary conditions (2 .3 )  and (2 .4)  at the bore and uniform conditions 
u = u1 and c = c1 at the C- characteristic OA for the case when the bore is initially 
subcritical (see figure 1 a) .  The corresponding boundary-value problem for the 
case when the bore is initially supercritical is shown in figure 1 ( b ) .  

We substitute the Riemann variables F = u + 2c and X = u - 2c in (2 .1 )  and 
(2.2)’ and choose the negative-characteristic co-ordinate a and the spatial co- 
ordinate x as the new independent variables. The co-ordinate a is parametrized 
such that a = t at the bore. The system (2.1) and (2 .2 )  now becomes 

Equation ( 2 . 5 )  may be rewritten as 

Whitham’s rule is obtained by equating the left-hand side of (2 .7 )  to zero. 
Along the bore this rule gives 

Integration of (2.8), together with the conditions (2 .3)  and (2 .4) ,  gives the solution 

F = FB(x), # = s B ( X )  ( 2 .9 )  

= tB(x ) ,  (2 .10)  

just behind the bore, and the bore path itself is obtained as 

where the initial condition FB(0) = u1 + 2c, has been employed. 
Whitham has argued that his rule works because the factor F a  a,, = Ft is 

small all along the bore. To connect his approximation with the theory of 
modulated simple waves of Varley et al. we rewrite (2 .6)  as 

[l+AF/(3S+FB)](35+F’)X,, = g & ( X ) ,  (2.11) 

lAp/(3X+F’)l < 1, (2.12) 

where AF = F - FB. Now we assume that 

defining a modulated simple wave (Varley et al. 1971). While Whitham’s rule is 
based on F,t being small for each point x on the bore path, the assumption (2.12) 
further requires AF to be small over the time interval of interest. Thus the flow in 
the entire region behind the bore is a modulated simple wave with F = FB(x), 
and iseasilyfound. Theresults obtainedunderthis assumptionagreevery wellwith 
exact numerical solutions ( $ 4 ) .  
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Under the assumption (2.12),  (2.11) may be approximated by 

(2 .13)  

Starting from a point (x ,  a)  on the bore, (2.13) is integrated along the negative 
characteristic a = constant. The initial condition at the bore is 

s(z, Ol)bore = sB(x) (2.14) 

and is obtained from (2 .9 ) .  To a first approximation we have 

x dx  s XB (FB f 3s) ' 
t ( x , a )  = a + 4  

where a = tB (xB);  see (2 .10) .  

(2.15) 

The solution in the entire region behind the bore is obtained as follows. In  the 
subcritical case we proceed from the bore to the line x = 0 as explained above 
(see figure l u ) .  The region AOB bordering the constant state on the left is a 
simple wave and is given by 

x = t(a, 0) + &(F + 3 5 )  t(a, x), 

F = u, + 2c1, S(a, x) = S(a, 0). (2.16) 

In the supercritical case (figure 1 b )  the solution in the region AOC is obtained 
as explained above and that in the region AOB is steady and, therefore, given by 

8 = s(o,x) ,  P = PB(x)s (2.17) 

U'e notice from (2 .16)  and (2 .17)  that the boundary conditions on the lines 
separating uniform regions, OA for the subcritical and OB for the supercritical 
case, have been exactly satisfied. 

The error involved in the approximation (2 .12)  is estimated from (2 .5) ,  making 
use of (2 .8) .  Thus, at a fixed station x = x,  > 0, 

where t,(xl) is the time at which the bore reaches the shore. Equation (2.18) 
implies 

(2.19) 

where T = t B ( ~ , ) - t S ( x l )  and the maximum is taken over tB < t < t8 at x = xl. 
The inequality (2.19) is similar to inequality (4.21) of Varley et al. (1971) and 
shows that the approximation is good when the pulse duration is small. 

In  the subcritical case, the approximation (2.12) breaks down in a small region 
where the flow is approximately sonic (i.e. 3S+Ii;, M 0). For example, for the 
case N = 0.25 (see § 4 ) ,  this happens at the bore at T = 0.898, when the bore is 
close to the shoreline. Keller et al. have depicted their numerical solution up to 
this time only in their figure 4 (a). A new dependent variable G = u - c is intro- 
duced (cf. Friedman 1960) and (2 .6)  is then written in the form 
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Equations (2.5) and (2.6) are now approximated by 

F = FB(x) 
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and (2.20) 

3. Expansion near the bore 

sion of the solution near the bore. We assume 
It is of some interest to compare our results with those obtained by an expan- 

F = EIB(Z) + ( t - t ~ ( Z ) ) q ( X )  + ( ~ - - B ( Z ) ) ~ P ~ ( Z )  + - a * ,  

8 = s B ( z )  +(t-tB(x))sI(Z) +(t-tB(x))252(Z) + * . * t  

(3.1) 

(3.2) 

and substitute in the equations 

which follow from (2.1) and (2.2). We obtain 

It is easy to check, using (2.8), that 

Equation (3.7) is, in fact, our assumption (2.12). The solutions (3.1) and (3.2) for 
both the subcritical and the supercritical case were obtained and compared with 
the exact numerical solution of Keller et al. and our approximate solution. While 
for the subcritical case the accuracies of this expansion and the present method 
are comparable, the error in each being less than 3 %, for the supercritical case 
the above expansion fails badly. For the &st approximation the departure from 
the exact numerical solution becomes as large as 32 yo, while the method sugges- 
ted in $ 2  gives a solution with an error never exceeding 4 yo. Besides, &(x) is not 
small comparedwith S,(x), so that theflow behind the bore is essentiallyunsteady. 

4. Numerical results 
I n  this section we give the numerical results obtained by our method for the 

problem discussed by Keller et al. A bore, initially a t  the point x = 0, climbs up a 
beach of constant slope p to the shoreline x = x,. The flow behind the bore ob- 
tained by our method is compared with that calculated by Keller et al. using a 
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FIGURE: 2 (a). For legend see facing page. 
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kite-difference scheme. To facilitate the comparison we use their notation: 

where h(x, t )  = g-b2(x, t ) .  Computations were carried out for two different initial 
heights of the bore (Nl = 0.25 and N, = 10.0) using (2.13) and our results are 
compared with the exact numerical solution in figures 2 (a) and ( b ) .  The agreement 
is very good and the maximum deviation is less than 4 yo. 

5. Conclusions 
We have adopted an approximate analytic approach to the problem of a bore 

climbing up a sloping beach, extending for the first time Whit'ham's (1958) 
characteristic rule to provide flow details in the entire region behind the bore. 
This approach turns out to be equivalent to the theory of modulated simple 
waves of Varley et al. (1971). The numerical results obtained by using the present 
approach as described in Q 4 show excellent agreement with the exact numerical 
solution of Keller et al. both when the initial uniform flow behind the bore is 
supercritical and when it is subcritical. An upper bound for the error in the 
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FIGURE 2. The flow behind the bore: height N and particle velocity V. - - -, Keller et al. ; 
-, present theory. (a) N ( 0 )  = 0.25, T = 0.898. (a) N(0)  = 10.0, T = 0.103. 

Riemann variable F based on (2.19) is found to be very small indeed. However, no 
attempt has been made to include the situation where secondary bores form 
in the sonic region (Friedman 1960). 
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